Fructose 1,6-Bisphosphatase in the Green Alga Selenastrum minutum: I. Evidence for the Presence of Isoenzymes.
نویسندگان
چکیده
Two isoforms of fructose 1,6-bisphosphatase are present in the green alga Selenastrum minutum. The isoenzymes can be separated with ionexchange chromatography or acid precipitation. The stability of the two isoenzymes differ largely. The acid insoluble enzyme exhibits properties similar to that of the enzyme from the chloroplasts of higher plants, i.e. an alkaline pH optima in the absence of reductant, a lower affinity for substrate, strong inhibition by phosphate, and a low sensitivity to fructose-2,6-bisphosphate and AMP. The more abundant form of the enzyme exhibits several properties indicative of heterotrophic fructose 1,6 bisphosphatases, i.e. a high affinity for substrate and sensitivity toward fructose-2,6-bisphosphate and AMP. but is absolutely dependent on a reductant for stability and activity. Evidence is provided indicating that previously reported purification protocols cause inactivation of one of the isoenzymes which could lead to the erroneous conclusion that algae have a single fructose 1,6-bisphosphatase isoenzyme.
منابع مشابه
Anaerobic Metabolism in the N-Limited Green Alga Selenastrum minutum: I. Regulation of Carbon Metabolism and Succinate as a Fermentation Product.
The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kina...
متن کاملMolecular, Kinetic, and Immunological Properties of the 6-Phosphofructokinase from the Green Alga Selenastrum minutum: Activation during Biosynthetic Carbon Flow.
The ATP:d-fructose-6-phosphate 1-phosphotransferase (PFK) from Selenastrum minutum was purified to homogeneity. The purified plastid enzyme had a specific activity of 180 micromoles per milligram of protein per minute. It is a homomer with a subunit molecular weight of 70,000. The smallest enzymatically active form of the protein is a homotetramer of 280,000 daltons. The enzyme can, however, ag...
متن کاملDes-1-25-fructose-1,6-bisphosphatase, a nonallosteric derivative produced by trypsin treatment of the native protein.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable su...
متن کاملA new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.
Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing thei...
متن کاملMolecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus.
The Pyrococcus furiosus fbpA gene was cloned and expressed in Escherichia coli, and the fructose-1,6-bisphosphatase produced was subsequently purified and characterized. The dimeric enzyme showed a preference for fructose-1,6-bisphosphate, with a K(m) of 0.32 mM and a V(max) of 12.2 U/mg. The P. furiosus fructose-1,6-bisphosphatase was strongly inhibited by Li(+) (50% inhibitory concentration, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 93 4 شماره
صفحات -
تاریخ انتشار 1990